
Enhancing Timing-Driven FPGA Placement
for Pipelined Netlists

Ken Eguro Scott Hauck
Department of Electrical Engineering, University of Washington, Seattle, WA 98195 USA

{eguro, hauck}@ee.washington.edu
ABSTRACT
FPGA application developers often attempt to use pipelining, C-
slowing and retiming to improve the performance of their designs.
Unfortunately, such registered netlists present a fundamentally
different problem to the CAD tools, limiting the benefit of these
techniques. In this paper we discuss some of the inherent quality
and runtime issues pipelined netlists present to existing timing-
driven placement approaches. We then present some algorithmic
modifications that reduce post-compilation critical path delay by
an average of 40%.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids – Placement and
routing.

General Terms
Algorithms, Design.

Keywords
Reconfigurable logic, FPGA, placement, simulated annealing,
timing-driven, pipelined.

1. INTRODUCTION
Although the widespread popularity of FPGAs is a testament to
their unique blend of flexibility and ease of use, this adaptability
generally comes at a price. As discussed in [3], circuits
implemented on an FPGA can be expected to run three to four
times slower than their ASIC counterparts. To minimize the
effect of this intrinsic performance penalty, specialized timing-
driven placement and routing techniques have been developed for
reconfigurable devices [5] [6]. Although applied to completely
different phases of the mapping process, the most successful
timing-aware placement and routing algorithms share a general
approach to maximizing the achievable clock rate: they first
identify the portions of the circuit that might be timing-critical,
then give these sensitive sections special priority over less critical
portions of the netlist during compilation.
Although these timing-driven CAD tools perform well given
classical netlists, to further improve performance FPGA
application developers often apply a variety of pipelining, C-
slowing and retiming techniques to their circuits. However, these
heavily registered netlists may not always reach their maximum
potential. As we will discuss in this paper, registered netlists have

some fundamentally different characteristics that can limit the
efficacy of existing timing-driven placement approaches.

2. Classical Timing-Driven Placement
VPR [5] is one of the most popular academic FPGA place and
route tool suites. As the de facto standard, it has served as both a
building platform and comparison target for countless other
research efforts. VPR includes T-VPlace, a simulated annealing
based timing-driven placement algorithm. T-VPlace considers
both a net’s wirelength and delay contribution during placement
to achieve a good balance between overall netlist routability and
critical path delay. During simulated annealing, it calculates the
cost of a move using Eq. 1.

iring_CostPrevious_W
CostWiring

iming_CostPrevious_T
tTiming_CosC

_*)1(

Δ*

Δ
−

+=Δ

λ

λ
 (1)

In this way, VPR can emphasize maximum routability (λ = 0.0),
minimum critical path delay (λ = 1.0) or, most likely, strike a
balance between the two. While the Wiring_Cost is essentially
just a summation of all nets’ bounding boxes, calculating the
Timing_Cost is a bit more complex.
Before placement on a given architecture is started, VPR builds a
table that estimates the shortest path delay from each logic block
and I/O pad in the array to every other logic block and I/O pad.
VPR uses this table throughout the annealing process to determine
the source/sink delay of each connection in the netlist.
Calculating the timing cost of the current placement begins by
performing a static timing analysis on the initial random
placement. This gives us both Dmax, the overall maximum critical
path delay of the current placement, and Slack(i, j), the amount of
delay we could add to the connection between source i and sink j
without increasing the critical path delay.
As shown in Eq. 2, we can calculate the relative criticality of each
link in the netlist based upon this information. Using Eq. 3, VPR
then weights the impact of the delay between each source-sink
pair based upon its criticality. That is, delay along a path that has
lots of timing slack is relatively cheap, while delay anywhere
along the critical path is expensive. Finally, Eq. 4 shows that the
overall placement timing cost is calculated as the summation of
the timing cost of each source/sink pair.

max

),(1),(
D

jiSlackjiyCriticalit −= (2)

 ExpCritjiyCriticalit

jiDelayjitTiming_Cos
_),(

*),(),(=
 (3)

 ∑=),(jitTiming_CostTiming_Cos (4)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Under review for DAC 2008, June 9–13, 2008, Anaheim, CA,USA.

3. Implications
Although VPR’s T-VPlace formulation showed a dramatic critical
path delay improvement as compared to a purely congestion-
driven placement tool in [5], relatively little is known about the
absolute performance of the algorithm. In this section we will
discuss some potential shortcomings of the T-VPlace approach
that can eventually lead to instabilities in the simulated annealing
placement itself.

3.1 Criticality Accuracy & Runtime
If we focus on Eq. 2 and 3, we can see that VPR’s timing cost
function is based upon the source/sink criticalities calculated
during static timing analysis. Unfortunately, static timing
analysis is far too computationally expensive to perform after
each annealing move. Thus, VPR’s default settings only perform
a single timing analysis at the beginning of each temperature
iteration, and then use these criticalities to calculate the quality of
subsequent moves. This means that VPR performs less than a few
hundred timing analyses, instead of potentially several million.
If we revisit VPR’s basic cost function, we can capture this
optimization formally. We can see in Eq. 5 that VPR calculates
the criticality of each source/sink pair (i, j) at the beginning of
temperature iteration k. For any given placement within a
temperature iteration, we use Eq. 6 to calculate the timing cost.
This is simply the delay of the source/sink pair (i, j) at
temperature iteration k, move number l, multiplied by the
criticality of the link as calculated at the beginning of the
temperature iteration. This makes the incremental timing cost
simply the change in delay between move (l-1) and move l,
multiplied by the criticality of the link at the beginning of the
temperature iteration.

)(

),,(1),,(
max kD

kjiSlackkjiyCriticalit −= (5)

 ExpCritkjiyCriticalit

lkjiDelaylkjitTiming_Cos
_),,(

*),,,(),,,(=
 (6)

[]

ExpCritkjiyCriticalit

lkjiDelaylkjiDelaylkjiTC
_),,(

*)1,,,(),,,(),,,(−−=Δ
 (7)

Unfortunately, while this optimization does make placement
several orders of magnitude faster, since we do not update the
criticality nor critical path delay within a temperature iteration,
we slowly get less and less accurate timing information. This can
lead to less than optimal final results.
Consider the example shown in Figure 1. At the beginning of the
annealing we calculate the critical path delay. We then use this
value to calculate the slack and criticality of each source/sink
pair. However, as we move blocks around, a gap forms between
the real criticalities of the current placement and the values we
use to calculate the timing cost. Since a single temperature
iteration might attempt tens or hundreds of thousands of moves,
the optimizations we attempt towards the end of a temperature
iteration can extremely inaccurate.
In Figure 1 we believe that we will make the system better if we
move block a to reduce the delay on the critical path (a, c).
However, this move only accomplishes this by adding delay to
the previously non-critical path (a, b). Although this actually

increases the circuit’s real critical path delay, the placement tool
is unaware this is a poor choice.
Assuming for the moment that we are willing to ignore algorithm
runtime, we can demonstrate the advantages of more up-to-date
criticality information. In Figure 2 we show two placement runs
of the benchmark ex5p on the single 4-LUT, single FF
4lut_sanitized architecture. Indicated with squares is the wire
cost and critical path delay recalculated at the end of each
temperature iteration when we perform one static timing analysis
(STA) per temperature iteration. Indicated with triangles are the
results when we perform 1000 static timing analyses per
temperature. In the case of ex5p, this equates to roughly one
static timing analysis for every 100 attempted simulated annealing
moves.
As we can see, while the wire costs for both placement runs are
smoothly declining, the critical path delay for the placement
performed with the default settings fluctuates considerably. This
is particularly concerning since this oscillation persists even as we
near the end of the annealing process. This is likely due to the
fact that, with stale criticality information, the placement tool
does not realize when it is increasing the critical path delay of the
system. On the other hand, the placement performed with
frequent static timing analysis shows a much more stably
decreasing critical path delay.
In Table 1 we show results for static timing analysis testing for
the full suite of VPR netlists, 22 of the largest combinational and
sequential MCNC benchmarks. We report normalized geometric
mean placement wire cost and routed critical path delay. Testing
was performed on the 4lut_sanitized architecture using the most

7/0/1.0

2/0/1.0

2/0/1.0

Timing Cost = (2+7+1)*1.0 + (1+2)*0.5 = 11.5
Critical Path Delay = 10

Timing Cost = (2+1+1)*1.0 + (7+2)*0.5 = 8.5
Critical Path Delay = 11

1/0/1.0

a b
c

1/5/0.5 2/5/0.5

a
b
c

7/5/0.5
2/5/0.5

1/0/1.0 1/0/1.0

Figure 1. Effect of stale criticality information.

Notation: delay / slack / criticality

0.2

0.4

0.6

0.8

1

1.2

1 11 21 31 41 51 61 71 81 91 101

Temperature Iterations

N
or

m
al

iz
ed

 V
al

ue

Wire Cost 1
STA/Temp
Critical Path Delay 1
STA/Temp
Wire Cost Update
1000 STA/Temp
Critical Path Delay
1000 STA/Temp

Figure 2. Netlist ex5p and accurate criticality information

commonly used methodology: minimum sized arrays with 1.2x
the minimum channel width. Placements were routed using the

built in timing-driven routing tool with A* optimizations turned
off. We did not use A* during any of our testing because we
noticed that VPR’s aggressive implementation affected routing
quality unpredictably. Here we can see a relatively clear average
critical path delay benefit of 14% when we perform 100-1000
static timing analyses per temperature. Updating more frequently
than that does not seem to have measurable additional benefit.
Although this critical path delay benefit is nice, there is the matter
of placement runtime. While CPU time is notoriously difficult to
equitably report (doubly so in our case since we utilized a Condor
cluster to perform testing), we expect that such placements would
take 100-1000x longer to produce. This is because the time
required to perform static timing analysis largely eclipses any of
the other necessary calculations associated with placement.

3.2 Registered Netlists & Placement Stability
Unfortunately, our concerns surrounding timing-driven placement
go beyond computational complexity when we consider pipelined
netlists. If we attempt to repeat our testing, but with heavily
registered circuits, we can see that frequent static timing analysis
does not necessarily improve our results. Rather, it can induce
serious placement convergence problems.
If we consider the example in Figure 3, we see that if the critical

Table 1. Benefits of frequent static timing
analysis – Conventional MCNC netlists

λ,Crit_Exp Static Timing
Analysis/Temp

Normalized
Wire Cost

Normalized
Routed CPD

0.5, 8.0 1 1.00 1.00
 10 1.03 0.90
 100 1.03 0.86
 1000 1.03 0.86
 10000 1.04 0.87

5/0/1.0 1/4/0.2

1/4/0.2 5/0/1.0

Timing Cost = 5*1.0 + 1*0.2 = 5.2

Timing Cost =1* 0.2 + 5*1.0 = 5.2

3.0/0/1.03.0/0/1.0
Timing Cost = (3.0 + 3.0)*1.0 = 6.0

Figure 3. Registered netlists & placement oscillation

0.2

0.4

0.6

0.8

1

1.2

1 11 21 31 41 51 61 71 81 91 101 111

Temperature Iterations

N
or

m
al

iz
ed

 V
al

ue

Wire Cost 1
STA/Temp
Critical Path Delay 1
STA/Temp
Wire Cost 1000
STA/Temp
Critical Path Delay
1000 STA/Temp

Figure 4. Pipelined/retimed netlist ex5p and placement

convergence problems (λ = 0.5, Crit_Exp = 8.0)
path delay, slack and source/sink criticalities are updated after

each move, we encourage the system to place the register off-
center, actively avoiding the placement with the best critical path
delay. Of even greater concern, though, is that the register can
freely move between being off-center to the left and off-center to
the right. For a placement tool concerned with trying to optimize
both wirelength and delay simultaneously, this makes for a
difficult, constantly moving target. This destabilizes the
placement and can cause the annealing not to converge. When we
were not updating criticalities very often under the classic VPR
scheme, although we were not necessarily optimizing towards the
correct goal, at least the guiding forces in the placement within a
given temperature iteration were consistent. In that way we
would always make forward progress, albeit towards a potentially
less than optimal destination.
We can see this problem clearly manifest itself when we repeat
our static timing analysis testing on fully pipelined/C-slowed and
retimed netlists. All of the original 22 VPR benchmarks were
pipelined and/or C-slowed, then processed via Leiserson/Saxe
retiming [4] to create circuits with a maximum logic depth of one
LUT. These netlists were then packed into CLBs with T-VPack
and, again, placed onto minimum-sized 4lut_sanitized
architectures with 1.2x the minimum channel width as found by
default VPR. As with our earlier testing, routing was handled by
the VPR timing-driven routing tool with A* disabled.
In Figure 4 we show two placement runs of the fully pipelined
ex5p netlist. Indicated with squares is the wire cost and critical
path delay for placement when we perform static timing analysis
once per temperature iteration. Indicated with triangles are the
results when we perform 1000 static timing analyses per
temperature iteration. From this graph, the placement performed
with very frequent timing analysis clearly suffers from
convergence issues.
We found this kind of behavior typical among our pipelined
MCNC netlists. When performing placement on these circuits
with more frequent static timing analysis and the default values
VPR suggests for Eq. 1 and 3 (λ = 0.5, Crit_Exp = 8.0), we found
that many of the netlists’ registers oscillate in a futile attempt to
reduce their critical path delay. This results in poor placements
with unusually high wire cost. We can combat this oscillation
somewhat by lowering the emphasis we place on timing.
Unfortunately, while this allows us to get stable placements more
reliably, we also somewhat compromise our search for good
critical path delay. Shown in Table 2 are the results we obtained
from VPR using (λ = 0.5, Crit_Exp = 1.0). For these fully
pipelined netlists we are able to improve critical path delay by
16% when we perform 100 static timing analyses per temperature.
However, even our attempts at stabilizing the annealing are not
entirely successful when we attempt to perform more than 100
timing analyses per temperature. Although we were unable to
complete our testing of VPR varying both λ and Crit_Exp due to
the extremely large computational requirements, preliminary
testing indicates that even the best placement parameters would
only improve VPR’s achievable critical path delay by
approximately 5-10%.
If we take a step back for a moment, we should not be surprised
by the difficulties we encountered producing high-quality timing-
driven placements for regular netlists, much less pipelined
netlists. Heavily registered circuits are well known for posing

Table 2. Limitations of frequent static timing analysis -
Fully pipelined MCNC netlists. Asterisk indicate that some
placements were unroutable and not included in the average.

λ, Crit_Exp Static Timing
Analysis/Temp

Normalized
Wire Cost

Normalized
Routed CPD

0.5, 8.0 1 1.00 1.00
 10 1.06* 0.95*
 100 1.06* 0.75*
 1000 1.73* 0.68*

0.5, 1.0 1 0.96 0.89
 10 0.96 0.86
 100 0.96 0.84
 1000 0.96* 0.86*
 10000 0.96* 0.85*

unique problems to CAD tools. For example, much of our
discussion so far is very reminiscent of the difficulties
encountered in [2] which attempted to tackle the issues of timing-
driven routing for pipelined netlists. This holds particularly true
given the issue raised by Figure 3, where VPR’s placement
algorithm actually discourages the best placement.
Furthermore, placement for pipelined netlists has been a known
difficult problem for some time. For example, the deeply
pipelined radio cross-correlator in [7] was laboriously hand-
placed by the author to achieve good performance. This
painstaking process even inspired the authors of [1] to develop a
specific tool to assist in manual pipelining and placement. The
extreme difficulty of such an endeavor, given the scale of even
relatively small FPGA designs, is likely indicative of the
complexities these netlists present to the design tools.

4. Efficient and Stable Placement
Looking back at the problems we encountered during placement
we can identify two primary issues. First, to produce high quality
placements we need to have up-to-date criticality information.
How do we get this data without resorting to the computationally
impractical solution of performing a full static timing analysis
after each move? Second, worrisome instability develops during
the annealing process when we attempted to use fresh timing
information during the placement of registered netlists. What can
we do to stabilize the system?

4.1 Updating Criticality Incrementally
We believe we can provide current timing information with low
computational effort by tracking incremental changes to link
slack. Although this methodology can only estimate criticality, it
does provide enough information to the placement tool to reveal
shifts in timing significance. While nothing can replace a full
static timing analysis performed at the beginning of each
temperature iteration, we can attempt to maintain the relevance of
this information by reflecting changes in link delay on link slack.
Each time an annealing move is made, VPR’s timing-driven
placement algorithm already evaluates the change in link delay
for all sources and sinks connected to the migrated blocks. As
seen in Eq. 8 and 9, if we simply subtract the change in link delay
from the link slack, we can easily recompute an estimated
source/sink criticality for the new placement.

),,,()1,,,(),,,(lkjiDelaylkjiSlacklkjiSlack Δ−−= (8)

7/0/1.0

If we update slack incrementally, then recalculate link criticality:
Timing Cost = (2+1)* 1.0 + 7*1.1 + 1*0.4 + 2*0.5 = 12.1
Still believes critical path is 10

2/0/1.0

2/0/1.0

Initial placement & static timing analysis:
Timing Cost = (2+7+1)*1.0 + (1+2)*0.5 = 11.5
Critical Path Delay = 10

1/0/1.0

a b
c

1/5/0.5 2/5/0.5

a
b
c

7/-1/1.1
2/5/0.5

1/6/0.4 1/0/1.0

2/0/1.0

If we re-run a full timing analysis instead:
Timing Cost =(2+7+2)* 1.0 + (1+1)*0.36 = 11.72
Critical Path = 11

a
b
c

7/0/1.0

1/7/0.36 1/7/0.36

2/0/1.0

Figure 5. Accuracy of incremental slack and criticality

update versus full timing analysis

)(
),,,(1),,,(

max kD
lkjiSlacklkjiyCriticalit −= (9)

While less accurate than a complete timing analysis, this only
requires two additional add/subtracts and one
multiplication/division to preserve the majority of the accuracy of
the netlist’s criticality information. Looking at the top and middle
illustrations of Figure 5, we can see this technique in action. Here
we revisit the example fromFigure 1, but incrementally update the
slack and link criticality information.. The suggested move
decreases the delay on (a, c) by six units from 7 to 1 and increases
the delay on (a, b) by six units from 1 to 7. To evaluate the
quality of the new placement, we reflect this change on the links’
slacks. Since (a, c) was on the critical path, the original slack was
0. Thus, we account for the six unit drop in delay and calculate
the new slack on this link to be (0 + 6 = 6). We then use this
updated slack to recalculate the criticality of this link. In this
case, we still believe the critical path to be 10 units, so we get a
criticality of 0.4. Similarly we account for the six unit increase in
delay on (a, b) by updating the slack to (5 - 6 = -1). This makes
the criticality of this link 1.1. Finally, we compute the timing cost
of this new placement based upon our incrementally updated
timing information. From this we can see that the annealer is now
aware that the new placement is not as good as the previous one.
Although this methodology does effectively address the large-
scale problem of placement in the face of inaccurate timing
information, we should note that this technique cannot guarantee
perfect criticality data – that would require true static timing
analysis. In the bottom diagram of Figure 5 we show the link
slack, criticality and timing cost of the new placement as
calculated with exact static timing analysis information. If we
compare the results of the two techniques, we notice that not only
do we not realize that the current critical path has changed, the
emphasis placed on the links between blocks b and c and the
output pads is also completely incorrect. That said, our estimates
do track relatively well, especially considering the extremely low
computational requirements.

4.2 Reformulated Cost Function
If we re-examine the problems that we encountered in Section 3,
we realize that a good timing-driven placement cost function
should have three qualities. First, it should account for the change

in criticality that occurs on a given link when we increase or
decrease the link’s delay. Without this characteristic we can
unwittingly decrease delay on already fast links while adding
delay to already slow links. Second, the cost function must prefer
balanced delay to unbalanced delay. That is, if the placement tool
believes it is a better idea to place a register off-center in terms of
pre-register and post-register delay, the register may oscillate
between the equally unbalance positions on either side. Third, the
cost function should be able to recognize situations in which we
have reduced the overall critical path delay of the system.
Although a move might make nearly all connections in a circuit
critical, this could be a positive step if the new placement has a
lower critical path delay.
We believe that the timing cost methodology shown in Eq. 8-12
fulfills all of these requirements. Given the incremental slack
update methodology discussed above, we calculate the new
criticality of each source/sink link after each move based upon the
critical path delay of the system found at the beginning of the
temperature iteration. Since we already calculate the delay of
each source/sink pair after each move, we can then define the
timing cost of a given placement as the summation of all
source/sink delays multiplied by their current estimated criticality.

ExpCritlkjiyCriticalit

lkjiDelaylkjitTiming_Cos
_),,,(

*),,,(),,,(=
 (10)

∑=),,,(l)(k, lkjitTiming_CostTiming_Cos (11)

If we look at how this affects the way differences between two
placements actually manifest themselves, we see that the timing
cost delta is now calculated in an inherently different way.

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=Δ

ExpCrit

ExpCrit

lkjiyCriticalit

lkjiDelay

lkjiyCriticalit

lkjiDelay
lkjiTC

_

_

)1,,,(

*)1,,,(

),,,(

*),,,(
),,,(

 (12)

Here we see that the previous delay is multiplied by the previous
criticality and the new delay is multiplied by the new criticality.
This is quite different from the timing cost delta shown in Eq. 7.
The effect of this during placement is dramatic. For example, if
we return to the problematic example in Figure 3, we can see that
our modified cost function now correctly identifies the optimal
placement of the register. This is shown in Figure 6.

5. Testing
We tested this improved timing-driven placement technique using
the same set of classical MCNC and pipelined/C-slowed/retimed
MCNC netlists as mentioned earlier. With the exception of the
placement tool, all other testing considerations were kept the
same.

After some brief exploratory tuning, we used (λ = 0.1, Crit_Exp =
12.0) to place the unpipelined MCNC netlists and (λ = 0.025,
Crit_Exp = 12.0) to place the pipelined circuits. Although we are
still investigating the exact relationship, we know that our new
cost formulation requires much smaller values of λ to produce
good results. If we look at Eq. 9 and 10, we can see why. When
we reduce delay on a given link, we actually, from the standpoint
of the classical VPR framework, double-count this reduction.
This is because, unlike what VPR is expecting, the criticality of

1/4/0.2 5/0/1.0
Timing Cost = 1*0.2 + 5*1.0 = 5.2

3/2/0.6
Timing Cost = (3 + 3)*0.6= 3.6

3/2/0.6

Figure 6. Stability of the reformulated cost function

0

0.2

0.4

0.6

0.8

1

1.2

Default
VPR

Frequent
STA VPR

Incremental
Slack

Default
VPR

Frequent
STA VPR

Incremental
Slack

Original Netlists Pipelined Netlists

N
or

m
al

iz
ed

 V
al

ue

Wire Cost
Routed CPD

Figure 7. Wire cost and post-routing critical path

delay comparison for all examined tools
this link will also be updated to reflect the smaller delay. Thus,
when we multiply the two factors together, our delta timing costs
naturally become much larger than the range that the existing
VPR framework is expecting. A similar situation holds true for
when we increase the delay on a given link.
Figure 7 shows a summary of our results, and further details can
be found in Table 3. Taking at look at these values, we can see
that our incremental slack approach combined with our
reformulated cost function produces very good placements.
While the wire cost for placements performed on the purely
combinational or lightly registered original MCNC netlists is
comparable to that of VPR, we achieve an average of 10% better
post-routing critical path delay. Even if ignore the several orders
of magnitude difference in computational complexity between our
tool and VPR with frequent static timing analysis, the achieved
wire cost and critical path delay is very similar, differing by no
more than a few percent.
If we look at the results for deeply pipelined MCNC netlists, we
see an even more dramatic benefit to our approach. Here we
achieve an average 41% better critical path delay compared to the
original VPR formulation, with 9% better wire cost. Compared to
VPR with frequent static timing analysis, we achieve 25% better
critical path delay with 5% better wire cost – all accomplished
with none of the concerns regarding the large computational
complexity of static timing analysis.
Although not shown in detail due to space constraints, we also
tested our approach with netlists pipelined/C-slowed/retimed to a
maximum logic depth of two LUTs. Similar to what is shown in
Table 3, if we normalize to the results gathered by default VPR,
VPR with frequent static timing analysis (λ = 0.5, Crit_Exp = 2.0)
produced an average wire cost of 1.00 and a critical path delay of
0.77. Although still incomplete, our preliminary testing indicates
that our incremental timing approach will produce an average
wire cost of 0.96 and a critical path delay of 0.63.

6. Future Work
We have performed all of our testing thus far on the
4lut_sanitized architecture. While this very simple FPGA is a

useful comparison target due to its ubiquitous nature, modern
reconfigurable devices generally include clustered CLBs and
multiple lengths of long-distance wires. Although, based upon
our discussion and the results seen so far, we expect our approach
to produce superior placements as compared to existing placement
tools, we would like to investigate exactly how our technique
scales to more sophisticated architectures.

7. Conclusions
In this paper we have identified some longstanding but poorly
understood problems that surround CAD for pipelined netlists.
We have shown that although timing-driven placement can
improve critical path delay for conventional netlists, existing
methodologies have fundamental shortcoming when attempting to
deal with registered circuits. Not only are there multiple concerns
regarding solution quality and algorithm runtime, we must be
aware that some of the inherent characteristics of pipelined
circuits might interfere with the convergence of the placement
tool.
We have presented two modifications to the classic timing-driven
placement methodology that address these issues. First, our
incremental slack and source/sink criticality update approach
combines the low computational complexity of conventional
timing-driven placement with the much more accurate criticality
information of placement with frequent static timing analysis.
This allows the second portion of our approach, a reformulated
cost function, to accurately guide the system towards better
overall placements. Combining these techniques allows us to
produce much higher quality placements without significant
computational overhead. For conventional netlists we produce
placements that are on average 10% faster in terms critical path
delay with no degradation in routability. For heavily pipelined
netlists we generate placements that are 41% faster with 9% better

wire cost. For netlists somewhere between the two extremes, we
generate placements that are 37% faster with similar wire cost.

8. Acknowledgments
This work was sponsored in part by grant CCF0426147 from the
National Science Foundation, and grant DE-FG52-06NA27507
from the Department of Energy. The concepts in this paper are
covered by U.S. Provisional Patent Application No. 61/012,728,
December 10, 2007

9. References
[1] Chow, W. and J. Rose. “EVE: A CAD Tool for Manual

Placement and Pipelining Assistance of FPGA Circuits”,
Intl. Symp. on Field-Programmable Gate Arrays, 2002: 85-
94.

[2] Eguro, K. and S. Hauck. “Armada: Timing-Driven Pipeline-
Aware Routing for FPGAs", Intl. Symp. on Field-
Programmable Gate Arrays, 2006: 169-78.

[3] Kuon, I. and J. Rose, "Measuring the Gap between FPGAs
and ASICs." IEEE Trans. on Computer-Aided Design, Vol.
26, No. 2, Feb. 2007: 203 - 15.

[4] Leiserson, C. and J. Saxe, “Retiming Synchronous
Circuitry”, Algorithmica, Vol. 6, 1991: 5-35.

[5] Marquardt, A., V. Betz, and J. Rose. “Timing-Driven
Placement for FPGAs.” Intl. Symp. on Field Programmable
Gate Arrays, 2000: 203-13.

[6] McMurchie, L. and C. Ebeling, "PathFinder: A Negotiation-
Based Performance-Driven Router for FPGAs." Intl. Symp.
on Field-Programmable Gate Arrays, 1995: 111-7.

[7] Von Herzen, B. “Signal Processing at 250MHz using High-
Performance FPGA’s”, Intl. Symp. on Field-Programmable
Gate Arrays,1997: 62-8.

Table 3. Complete wire cost and post-routing critical path delay results
 Original MCNC Netlists Pipelined/C-Slowed & Retimed MCNC Netlists

 Default VPR
λ = 0.5, CritExp = 8.0

Frequent STA VPR
λ = 0.5, CritExp = 8.0

Incremental Slack
λ = 0.1, CritExp = 12.0

Default VPR
λ = 0.5, CritExp = 8.0

Frequent STA VPR
λ = 0.5, CritExp = 1.0

Incremental Slack
λ = 0.025, CritExp = 12.0

Netlist Wire CPD Wire CPD Wire CPD Wire CPD Wire CPD Wire CPD
alu4 201.10 7.83E-08 207.61 7.23E-08 199.37 7.58E-08 291.84 3.83E-08 268.85 3.07E-08 253.27 3.12E-08

apex2 280.18 9.66E-08 280.98 8.38E-08 272.07 8.61E-08 407.76 4.03E-08 375.01 3.30E-08 364.76 2.42E-08
apex4 192.57 7.74E-08 193.54 7.56E-08 184.70 8.33E-08 213.56 3.24E-08 207.68 3.07E-08 200.03 2.00E-08
bigkey 206.92 7.56E-08 242.81 4.42E-08 237.22 4.32E-08 269.51 4.70E-08 250.53 3.85E-08 242.04 2.89E-08
clma 1481.57 2.42E-07 1595.86 1.56E-07 1424.74 1.59E-07 2414.58 9.42E-08 2520.12 8.72E-08 2103.43 6.70E-08
des 249.48 9.12E-08 262.28 8.61E-08 258.01 7.16E-08 352.68 4.65E-08 349.63 3.14E-08 339.55 2.05E-08

diffeq 157.43 6.24E-08 158.04 5.94E-08 147.88 6.24E-08 485.70 5.38E-08 472.34 4.30E-08 459.45 2.87E-08
dsip 199.69 7.34E-08 230.60 3.95E-08 228.00 4.82E-08 259.39 4.31E-08 229.13 3.42E-08 203.01 3.36E-08
e64 30.21 3.12E-08 30.62 2.88E-08 29.81 3.18E-08 44.35 1.99E-08 40.98 1.46E-08 40.02 1.17E-08

elliptic 502.36 1.11E-07 519.86 1.04E-07 465.58 9.55E-08 1430.86 8.41E-08 1314.98 6.32E-08 1324.43 4.58E-08
ex1010 678.37 1.81E-07 676.88 1.49E-07 663.71 1.48E-07 876.20 5.40E-08 825.75 5.10E-08 796.05 3.64E-08
ex5p 178.17 6.75E-08 180.24 6.43E-08 169.60 6.99E-08 224.83 2.65E-08 216.80 3.18E-08 211.40 1.70E-08
frisc 584.86 1.62E-07 611.27 1.35E-07 536.85 1.29E-07 1427.26 7.17E-08 1438.06 7.32E-08 1382.66 2.82E-08

misex3 199.39 7.34E-08 202.35 6.42E-08 194.78 6.82E-08 269.73 3.53E-08 252.47 3.00E-08 239.27 2.23E-08
pdc 934.04 1.49E-07 958.96 1.43E-07 916.11 1.58E-07 1185.60 7.69E-08 1175.54 7.16E-08 1108.00 3.84E-08

s1423 16.37 5.82E-08 16.33 6.17E-08 15.56 7.05E-08 75.38 2.24E-08 68.70 1.58E-08 69.63 9.34E-09
s298 228.22 1.32E-07 228.34 1.33E-07 211.04 1.33E-07 456.04 4.85E-08 484.41 3.91E-08 417.54 2.82E-08

s38417 693.47 1.02E-07 706.32 7.84E-08 663.02 8.10E-08 1976.38 7.21E-08 1872.36 5.52E-08 1898.11 3.30E-08
s38584. 678.84 1.06E-07 687.54 7.19E-08 686.95 7.14E-08 1721.81 1.19E-07 1494.88 1.05E-07 1513.75 9.22E-08

seq 259.92 7.90E-08 264.26 7.61E-08 254.12 7.59E-08 355.04 4.49E-08 341.66 3.30E-08 325.21 3.07E-08
spla 625.59 1.35E-07 638.53 1.53E-07 627.76 1.41E-07 846.56 5.33E-08 828.61 5.04E-08 782.97 3.29E-08
tseng 102.62 5.53E-08 102.31 5.23E-08 95.51 5.58E-08 308.53 4.55E-08 314.08 4.02E-08 300.79 2.34E-08
Norm 1.00 1.00 1.03 0.86 0.98 0.90 1.77 0.53 1.70 0.44 1.62 0.31

 1.00 1.00 0.96 0.84 0.91 0.59

