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ABSTRACT 
FPGA application developers often attempt to use pipelining, C-
slowing and retiming to improve the performance of their designs.  
Unfortunately, such registered netlists present a fundamentally 
different problem to the CAD tools, limiting the benefit of these 
techniques.  In this paper we discuss some of the inherent quality 
and runtime issues pipelined netlists present to existing timing-
driven placement approaches.  We then present some algorithmic 
modifications that reduce post-compilation critical path delay by 
an average of 40%. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids – Placement and 
routing.  

General Terms 
Algorithms, Design. 

Keywords 
Reconfigurable logic, FPGA, placement, simulated annealing, 
timing-driven, pipelined. 

1. INTRODUCTION 
Although the widespread popularity of FPGAs is a testament to 
their unique blend of flexibility and ease of use, this adaptability 
generally comes at a price.  As discussed in [3], circuits 
implemented on an FPGA can be expected to run three to four 
times slower than their ASIC counterparts.  To minimize the 
effect of this intrinsic performance penalty, specialized timing-
driven placement and routing techniques have been developed for 
reconfigurable devices [5] [6].  Although applied to completely 
different phases of the mapping process, the most successful 
timing-aware placement and routing algorithms share a general 
approach to maximizing the achievable clock rate: they first 
identify the portions of the circuit that might be timing-critical, 
then give these sensitive sections special priority over less critical 
portions of the netlist during compilation.  
Although these timing-driven CAD tools perform well given 
classical netlists, to further improve performance FPGA 
application developers often apply a variety of pipelining, C-
slowing and retiming techniques to their circuits.  However, these 
heavily registered netlists may not always reach their maximum 
potential. As we will discuss in this paper, registered netlists have 

some fundamentally different characteristics that can limit the 
efficacy of existing timing-driven placement approaches. 

2. Classical Timing-Driven Placement 
VPR [5] is one of the most popular academic FPGA place and 
route tool suites.  As the de facto standard, it has served as both a 
building platform and comparison target for countless other 
research efforts.  VPR includes T-VPlace, a simulated annealing 
based timing-driven placement algorithm.  T-VPlace considers 
both a net’s wirelength and delay contribution during placement 
to achieve a good balance between overall netlist routability and 
critical path delay.  During simulated annealing, it calculates the 
cost of a move using Eq. 1. 
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In this way, VPR can emphasize maximum routability (λ = 0.0), 
minimum critical path delay (λ = 1.0) or, most likely, strike a 
balance between the two.  While the Wiring_Cost is essentially 
just a summation of all nets’ bounding boxes, calculating the 
Timing_Cost is a bit more complex.   
Before placement on a given architecture is started, VPR builds a 
table that estimates the shortest path delay from each logic block 
and I/O pad in the array to every other logic block and I/O pad.  
VPR uses this table throughout the annealing process to determine 
the source/sink delay of each connection in the netlist. 
Calculating the timing cost of the current placement begins by 
performing a static timing analysis on the initial random 
placement.  This gives us both Dmax, the overall maximum critical 
path delay of the current placement, and Slack(i, j), the amount of 
delay we could add to the connection between source i and sink j 
without increasing the critical path delay. 
As shown in Eq. 2, we can calculate the relative criticality of each 
link in the netlist based upon this information.  Using Eq. 3, VPR 
then weights the impact of the delay between each source-sink 
pair based upon its criticality.  That is, delay along a path that has 
lots of timing slack is relatively cheap, while delay anywhere 
along the critical path is expensive.  Finally, Eq. 4 shows that the 
overall placement timing cost is calculated as the summation of 
the timing cost of each source/sink pair. 
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3. Implications 
Although VPR’s T-VPlace formulation showed a dramatic critical 
path delay improvement as compared to a purely congestion-
driven placement tool in [5], relatively little is known about the 
absolute performance of the algorithm.  In this section we will 
discuss some potential shortcomings of the T-VPlace approach 
that can eventually lead to instabilities in the simulated annealing 
placement itself. 

3.1 Criticality Accuracy & Runtime 
If we focus on Eq. 2 and 3, we can see that VPR’s timing cost 
function is based upon the source/sink criticalities calculated 
during static timing analysis.  Unfortunately, static timing 
analysis is far too computationally expensive to perform after 
each annealing move. Thus, VPR’s default settings only perform 
a single timing analysis at the beginning of each temperature 
iteration, and then use these criticalities to calculate the quality of 
subsequent moves.  This means that VPR performs less than a few 
hundred timing analyses, instead of potentially several million. 
If we revisit VPR’s basic cost function, we can capture this 
optimization formally.  We can see in Eq. 5 that VPR calculates 
the criticality of each source/sink pair (i, j) at the beginning of 
temperature iteration k.  For any given placement within a 
temperature iteration, we use Eq. 6 to calculate the timing cost.  
This is simply the delay of the source/sink pair (i, j) at 
temperature iteration k, move number l, multiplied by the 
criticality of the link as calculated at the beginning of the 
temperature iteration.  This makes the incremental timing cost 
simply the change in delay between move (l-1) and move l, 
multiplied by the criticality of the link at the beginning of the 
temperature iteration. 
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Unfortunately, while this optimization does make placement 
several orders of magnitude faster, since we do not update the 
criticality nor critical path delay within a temperature iteration, 
we slowly get less and less accurate timing information. This can 
lead to less than optimal final results. 
Consider the example shown in Figure 1.  At the beginning of the 
annealing we calculate the critical path delay.  We then use this 
value to calculate the slack and criticality of each source/sink 
pair.  However, as we move blocks around, a gap forms between 
the real criticalities of the current placement and the values we 
use to calculate the timing cost.  Since a single temperature 
iteration might attempt tens or hundreds of thousands of moves, 
the optimizations we attempt towards the end of a temperature 
iteration can extremely inaccurate. 
In Figure 1 we believe that we will make the system better if we 
move block a to reduce the delay on the critical path (a, c).  
However, this move only accomplishes this by adding delay to 
the previously non-critical path (a, b).  Although this actually 

increases the circuit’s real critical path delay, the placement tool 
is unaware this is a poor choice. 
Assuming for the moment that we are willing to ignore algorithm 
runtime, we can demonstrate the advantages of more up-to-date 
criticality information.  In Figure 2 we show two placement runs 
of the benchmark ex5p on the single 4-LUT, single FF 
4lut_sanitized architecture.  Indicated with squares is the wire 
cost and critical path delay recalculated at the end of each 
temperature iteration when we perform one static timing analysis 
(STA) per temperature iteration.  Indicated with triangles are the 
results when we perform 1000 static timing analyses per 
temperature.  In the case of ex5p, this equates to roughly one 
static timing analysis for every 100 attempted simulated annealing 
moves.   
As we can see, while the wire costs for both placement runs are 
smoothly declining, the critical path delay for the placement 
performed with the default settings fluctuates considerably.  This 
is particularly concerning since this oscillation persists even as we 
near the end of the annealing process.  This is likely due to the 
fact that, with stale criticality information, the placement tool 
does not realize when it is increasing the critical path delay of the 
system.  On the other hand, the placement performed with 
frequent static timing analysis shows a much more stably 
decreasing critical path delay. 
In Table 1 we show results for static timing analysis testing for 
the full suite of VPR netlists, 22 of the largest combinational and 
sequential MCNC benchmarks.  We report normalized geometric 
mean placement wire cost and routed critical path delay.  Testing 
was performed on the 4lut_sanitized architecture using the most  
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Figure 1. Effect of stale criticality information. 
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Figure 2. Netlist ex5p and accurate criticality information 

commonly used methodology: minimum sized arrays with 1.2x 
the minimum channel width.  Placements were routed using the 



built in timing-driven routing tool with A* optimizations turned 
off.  We did not use A* during any of our testing because we 
noticed that VPR’s aggressive implementation affected routing 
quality unpredictably.  Here we can see a relatively clear average 
critical path delay benefit of 14% when we perform 100-1000 
static timing analyses per temperature.  Updating more frequently 
than that does not seem to have measurable additional benefit. 
Although this critical path delay benefit is nice, there is the matter 
of placement runtime.  While CPU time is notoriously difficult to 
equitably report (doubly so in our case since we utilized a Condor 
cluster to perform testing), we expect that such placements would 
take 100-1000x longer to produce.  This is because the time 
required to perform static timing analysis largely eclipses any of 
the other necessary calculations associated with placement. 

3.2 Registered Netlists & Placement Stability 
Unfortunately, our concerns surrounding timing-driven placement 
go beyond computational complexity when we consider pipelined 
netlists.  If we attempt to repeat our testing, but with heavily 
registered circuits, we can see that frequent static timing analysis 
does not necessarily improve our results.  Rather, it can induce 
serious placement convergence problems.  
If we consider the example in Figure 3, we see that if the critical  

Table 1. Benefits of frequent static timing  
analysis – Conventional MCNC netlists 

λ,Crit_Exp Static Timing 
Analysis/Temp 

Normalized 
Wire Cost 

Normalized 
Routed CPD

0.5, 8.0 1 1.00 1.00 
 10 1.03 0.90 
 100 1.03 0.86 
 1000 1.03 0.86 
 10000 1.04 0.87 

5/0/1.0 1/4/0.2

1/4/0.2 5/0/1.0

Timing Cost = 5*1.0 + 1*0.2 = 5.2

Timing Cost =1* 0.2 + 5*1.0 = 5.2

3.0/0/1.03.0/0/1.0
Timing Cost = (3.0 + 3.0)*1.0 = 6.0  

Figure 3. Registered netlists & placement oscillation 
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Figure 4. Pipelined/retimed netlist ex5p and placement 

convergence problems (λ = 0.5, Crit_Exp = 8.0) 
path delay, slack and source/sink criticalities are updated after 

each move, we encourage the system to place the register off-
center, actively avoiding the placement with the best critical path 
delay.  Of even greater concern, though, is that the register can 
freely move between being off-center to the left and off-center to 
the right.  For a placement tool concerned with trying to optimize 
both wirelength and delay simultaneously, this makes for a 
difficult, constantly moving target.  This destabilizes the 
placement and can cause the annealing not to converge.  When we 
were not updating criticalities very often under the classic VPR 
scheme, although we were not necessarily optimizing towards the 
correct goal, at least the guiding forces in the placement within a 
given temperature iteration were consistent.  In that way we 
would always make forward progress, albeit towards a potentially 
less than optimal destination. 
We can see this problem clearly manifest itself when we repeat 
our static timing analysis testing on fully pipelined/C-slowed and 
retimed netlists.  All of the original 22 VPR benchmarks were 
pipelined and/or C-slowed, then processed via Leiserson/Saxe 
retiming [4] to create circuits with a maximum logic depth of one 
LUT.  These netlists were then packed into CLBs with T-VPack 
and, again, placed onto minimum-sized 4lut_sanitized 
architectures with 1.2x the minimum channel width as found by 
default VPR.  As with our earlier testing, routing was handled by 
the VPR timing-driven routing tool with A* disabled. 
In Figure 4 we show two placement runs of the fully pipelined 
ex5p netlist.  Indicated with squares is the wire cost and critical 
path delay for placement when we perform static timing analysis 
once per temperature iteration.  Indicated with triangles are the 
results when we perform 1000 static timing analyses per 
temperature iteration.  From this graph, the placement performed 
with very frequent timing analysis clearly suffers from 
convergence issues.   
We found this kind of behavior typical among our pipelined 
MCNC netlists.  When performing placement on these circuits 
with more frequent static timing analysis and the default values 
VPR suggests for Eq. 1 and 3 (λ = 0.5, Crit_Exp = 8.0), we found 
that many of the netlists’ registers oscillate in a futile attempt to 
reduce their critical path delay.  This results in poor placements 
with unusually high wire cost.  We can combat this oscillation 
somewhat by lowering the emphasis we place on timing.   
Unfortunately, while this allows us to get stable placements more 
reliably, we also somewhat compromise our search for good 
critical path delay.  Shown in Table 2 are the results we obtained 
from VPR using (λ = 0.5, Crit_Exp = 1.0). For these fully 
pipelined netlists we are able to improve critical path delay by 
16% when we perform 100 static timing analyses per temperature. 
However, even our attempts at stabilizing the annealing are not 
entirely successful when we attempt to perform more than 100 
timing analyses per temperature.  Although we were unable to 
complete our testing of VPR varying both λ and Crit_Exp due to 
the extremely large computational requirements, preliminary 
testing indicates that even the best placement parameters would 
only improve VPR’s achievable critical path delay by 
approximately 5-10%. 
If we take a step back for a moment, we should not be surprised 
by the difficulties we encountered producing high-quality timing- 
driven placements for regular netlists, much less pipelined 
netlists.  Heavily registered circuits are well known for posing  



Table 2. Limitations of frequent static timing analysis -  
Fully pipelined MCNC netlists.  Asterisk indicate that some 
placements were unroutable and not included in the average. 

λ, Crit_Exp Static Timing 
Analysis/Temp 

Normalized 
Wire Cost 

Normalized 
Routed CPD

0.5, 8.0 1 1.00 1.00 
 10 1.06* 0.95* 
 100 1.06* 0.75* 
 1000 1.73* 0.68* 

0.5, 1.0 1 0.96 0.89 
 10 0.96 0.86 
 100 0.96 0.84 
 1000 0.96* 0.86* 
 10000 0.96* 0.85* 

 
unique problems to CAD tools.  For example, much of our 
discussion so far is very reminiscent of the difficulties 
encountered in [2] which attempted to tackle the issues of timing-
driven routing for pipelined netlists.  This holds particularly true 
given the issue raised by Figure 3, where VPR’s placement 
algorithm actually discourages the best placement. 
Furthermore, placement for pipelined netlists has been a known 
difficult problem for some time.  For example, the deeply 
pipelined radio cross-correlator in [7] was laboriously hand-
placed by the author to achieve good performance.  This 
painstaking process even inspired the authors of [1] to develop a 
specific tool to assist in manual pipelining and placement.  The 
extreme difficulty of such an endeavor, given the scale of even 
relatively small FPGA designs, is likely indicative of the 
complexities these netlists present to the design tools. 

4. Efficient and Stable Placement 
Looking back at the problems we encountered during placement 
we can identify two primary issues. First, to produce high quality 
placements we need to have up-to-date criticality information.  
How do we get this data without resorting to the computationally 
impractical solution of performing a full static timing analysis 
after each move?  Second, worrisome instability develops during 
the annealing process when we attempted to use fresh timing 
information during the placement of registered netlists.  What can 
we do to stabilize the system? 

4.1 Updating Criticality Incrementally 
We believe we can provide current timing information with low 
computational effort by tracking incremental changes to link 
slack.   Although this methodology can only estimate criticality, it 
does provide enough information to the placement tool to reveal 
shifts in timing significance.  While nothing can replace a full 
static timing analysis performed at the beginning of each 
temperature iteration, we can attempt to maintain the relevance of 
this information by reflecting changes in link delay on link slack. 
Each time an annealing move is made, VPR’s timing-driven 
placement algorithm already evaluates the change in link delay 
for all sources and sinks connected to the migrated blocks.  As 
seen in Eq. 8 and 9, if we simply subtract the change in link delay 
from the link slack, we can easily recompute an estimated 
source/sink criticality for the new placement. 
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Figure 5. Accuracy of incremental slack and criticality  

update versus full timing analysis 
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While less accurate than a complete timing analysis, this only 
requires two additional add/subtracts and one 
multiplication/division to preserve the majority of the accuracy of 
the netlist’s criticality information. Looking at the top and middle 
illustrations of Figure 5, we can see this technique in action.  Here 
we revisit the example fromFigure 1, but incrementally update the 
slack and link criticality information..  The suggested move 
decreases the delay on (a, c) by six units from 7 to 1 and increases 
the delay on (a, b) by six units from 1 to 7.  To evaluate the 
quality of the new placement, we reflect this change on the links’ 
slacks.  Since (a, c) was on the critical path, the original slack was 
0.  Thus, we account for the six unit drop in delay and calculate 
the new slack on this link to be (0 + 6 = 6).  We then use this 
updated slack to recalculate the criticality of this link.  In this 
case, we still believe the critical path to be 10 units, so we get a 
criticality of 0.4.  Similarly we account for the six unit increase in 
delay on (a, b) by updating the slack to (5 -  6 = -1).  This makes 
the criticality of this link 1.1.  Finally, we compute the timing cost 
of this new placement based upon our incrementally updated 
timing information.  From this we can see that the annealer is now 
aware that the new placement is not as good as the previous one. 
Although this methodology does effectively address the large-
scale problem of placement in the face of inaccurate timing 
information, we should note that this technique cannot guarantee 
perfect criticality data – that would require true static timing 
analysis.  In the bottom diagram of Figure 5 we show the link 
slack, criticality and timing cost of the new placement as 
calculated with exact static timing analysis information.  If we 
compare the results of the two techniques, we notice that not only 
do we not realize that the current critical path has changed, the 
emphasis placed on the links between blocks b and c and the 
output pads is also completely incorrect.  That said, our estimates 
do track relatively well, especially considering the extremely low 
computational requirements. 

4.2 Reformulated Cost Function 
If we re-examine the problems that we encountered in Section 3, 
we realize that a good timing-driven placement cost function 
should have three qualities.  First, it should account for the change 



in criticality that occurs on a given link when we increase or 
decrease the link’s delay.  Without this characteristic we can 
unwittingly decrease delay on already fast links while adding 
delay to already slow links.  Second, the cost function must prefer 
balanced delay to unbalanced delay.  That is, if the placement tool 
believes it is a better idea to place a register off-center in terms of 
pre-register and post-register delay, the register may oscillate 
between the equally unbalance positions on either side.  Third, the 
cost function should be able to recognize situations in which we 
have reduced the overall critical path delay of the system.  
Although a move might make nearly all connections in a circuit 
critical, this could be a positive step if the new placement has a 
lower critical path delay. 
We believe that the timing cost methodology shown in Eq. 8-12 
fulfills all of these requirements.  Given the incremental slack 
update methodology discussed above, we calculate the new 
criticality of each source/sink link after each move based upon the 
critical path delay of the system found at the beginning of the 
temperature iteration.  Since we already calculate the delay of 
each source/sink pair after each move, we can then define the 
timing cost of a given placement as the summation of all 
source/sink delays multiplied by their current estimated criticality. 
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If we look at how this affects the way differences between two 
placements actually manifest themselves, we see that the timing 
cost delta is now calculated in an inherently different way. 
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Here we see that the previous delay is multiplied by the previous 
criticality and the new delay is multiplied by the new criticality.  
This is quite different from the timing cost delta shown in Eq. 7.   
The effect of this during placement is dramatic.  For example, if 
we return to the problematic example in Figure 3, we can see that 
our modified cost function now correctly identifies the optimal 
placement of the register.   This is shown in Figure 6. 

5. Testing 
We tested this improved timing-driven placement technique using 
the same set of classical MCNC and pipelined/C-slowed/retimed 
MCNC netlists as mentioned earlier.  With the exception of the 
placement tool, all other testing considerations were kept the 
same.  

After some brief exploratory tuning, we used (λ = 0.1, Crit_Exp = 
12.0) to place the unpipelined MCNC netlists and (λ = 0.025, 
Crit_Exp = 12.0) to place the pipelined circuits.  Although we are 
still investigating the exact relationship, we know that our new 
cost formulation requires much smaller values of λ to produce 
good results.  If we look at Eq. 9 and 10, we can see why.  When 
we reduce delay on a given link, we actually, from the standpoint 
of the classical VPR framework, double-count this reduction.  
This is because, unlike what VPR is expecting, the criticality of  
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Figure 6. Stability of the reformulated cost function 
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Figure 7. Wire cost and post-routing critical path 

delay comparison for all examined tools 
this link will also be updated to reflect the smaller delay.  Thus, 
when we multiply the two factors together, our delta timing costs 
naturally become much larger than the range that the existing 
VPR framework is expecting.  A similar situation holds true for 
when we increase the delay on a given link. 
Figure 7 shows a summary of our results, and further details can 
be found in Table 3.  Taking at look at these values, we can see 
that our incremental slack approach combined with our 
reformulated cost function produces very good placements.  
While the wire cost for placements performed on the purely 
combinational or lightly registered original MCNC netlists is 
comparable to that of VPR, we achieve an average of 10% better 
post-routing critical path delay.  Even if ignore the several orders 
of magnitude difference in computational complexity between our 
tool and VPR with frequent static timing analysis, the achieved 
wire cost and critical path delay is very similar, differing by no 
more than a few percent. 
If we look at the results for deeply pipelined MCNC netlists, we 
see an even more dramatic benefit to our approach.  Here we 
achieve an average 41% better critical path delay compared to the 
original VPR formulation, with 9% better wire cost.  Compared to 
VPR with frequent static timing analysis, we achieve 25% better 
critical path delay with 5% better wire cost – all accomplished 
with none of the concerns regarding the large computational 
complexity of static timing analysis.   
Although not shown in detail due to space constraints, we also 
tested our approach with netlists pipelined/C-slowed/retimed to a 
maximum logic depth of two LUTs.  Similar to what is shown in 
Table 3, if we normalize to the results gathered by default VPR, 
VPR with frequent static timing analysis (λ = 0.5, Crit_Exp = 2.0) 
produced an average wire cost of 1.00 and a critical path delay of 
0.77.  Although still incomplete, our preliminary testing indicates 
that our incremental timing approach will produce an average 
wire cost of 0.96 and a critical path delay of 0.63.  

6. Future Work 
We have performed all of our testing thus far on the 
4lut_sanitized architecture.  While this very simple FPGA is a 



useful comparison target due to its ubiquitous nature, modern 
reconfigurable devices generally include clustered CLBs and 
multiple lengths of long-distance wires.  Although, based upon 
our discussion and the results seen so far, we expect our approach 
to produce superior placements as compared to existing placement 
tools, we would like to investigate exactly how our technique 
scales to more sophisticated architectures. 

7. Conclusions 
In this paper we have identified some longstanding but poorly 
understood problems that surround CAD for pipelined netlists.  
We have shown that although timing-driven placement can 
improve critical path delay for conventional netlists, existing 
methodologies have fundamental shortcoming when attempting to 
deal with registered circuits.  Not only are there multiple concerns 
regarding solution quality and algorithm runtime, we must be 
aware that some of the inherent characteristics of pipelined 
circuits might interfere with the convergence of the placement 
tool. 
We have presented two modifications to the classic timing-driven 
placement methodology that address these issues.  First, our 
incremental slack and source/sink criticality update approach 
combines the low computational complexity of conventional 
timing-driven placement with the much more accurate criticality 
information of placement with frequent static timing analysis.  
This allows the second portion of our approach, a reformulated 
cost function, to accurately guide the system towards better 
overall placements.  Combining these techniques allows us to 
produce much higher quality placements without significant 
computational overhead.  For conventional netlists we produce 
placements that are on average 10% faster in terms critical path 
delay with no degradation in routability.  For heavily pipelined 
netlists we generate placements that are 41% faster with 9% better 

wire cost.  For netlists somewhere between the two extremes, we 
generate placements that are 37% faster with similar wire cost. 
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Table 3. Complete wire cost and post-routing critical path delay results 
 Original MCNC Netlists Pipelined/C-Slowed & Retimed MCNC Netlists 

 Default VPR 
λ = 0.5, CritExp = 8.0 

Frequent STA VPR 
λ = 0.5, CritExp = 8.0 

Incremental Slack 
λ = 0.1, CritExp = 12.0 

Default VPR 
λ = 0.5, CritExp = 8.0 

Frequent STA VPR 
λ = 0.5, CritExp = 1.0 

Incremental Slack 
λ = 0.025, CritExp = 12.0 

Netlist Wire CPD Wire CPD Wire CPD Wire CPD Wire CPD Wire CPD 
alu4 201.10 7.83E-08 207.61 7.23E-08 199.37 7.58E-08 291.84 3.83E-08 268.85 3.07E-08 253.27 3.12E-08 

apex2 280.18 9.66E-08 280.98 8.38E-08 272.07 8.61E-08 407.76 4.03E-08 375.01 3.30E-08 364.76 2.42E-08 
apex4 192.57 7.74E-08 193.54 7.56E-08 184.70 8.33E-08 213.56 3.24E-08 207.68 3.07E-08 200.03 2.00E-08 
bigkey 206.92 7.56E-08 242.81 4.42E-08 237.22 4.32E-08 269.51 4.70E-08 250.53 3.85E-08 242.04 2.89E-08 
clma 1481.57 2.42E-07 1595.86 1.56E-07 1424.74 1.59E-07 2414.58 9.42E-08 2520.12 8.72E-08 2103.43 6.70E-08 
des 249.48 9.12E-08 262.28 8.61E-08 258.01 7.16E-08 352.68 4.65E-08 349.63 3.14E-08 339.55 2.05E-08 

diffeq 157.43 6.24E-08 158.04 5.94E-08 147.88 6.24E-08 485.70 5.38E-08 472.34 4.30E-08 459.45 2.87E-08 
dsip 199.69 7.34E-08 230.60 3.95E-08 228.00 4.82E-08 259.39 4.31E-08 229.13 3.42E-08 203.01 3.36E-08 
e64 30.21 3.12E-08 30.62 2.88E-08 29.81 3.18E-08 44.35 1.99E-08 40.98 1.46E-08 40.02 1.17E-08 

elliptic 502.36 1.11E-07 519.86 1.04E-07 465.58 9.55E-08 1430.86 8.41E-08 1314.98 6.32E-08 1324.43 4.58E-08 
ex1010 678.37 1.81E-07 676.88 1.49E-07 663.71 1.48E-07 876.20 5.40E-08 825.75 5.10E-08 796.05 3.64E-08 
ex5p 178.17 6.75E-08 180.24 6.43E-08 169.60 6.99E-08 224.83 2.65E-08 216.80 3.18E-08 211.40 1.70E-08 
frisc 584.86 1.62E-07 611.27 1.35E-07 536.85 1.29E-07 1427.26 7.17E-08 1438.06 7.32E-08 1382.66 2.82E-08 

misex3 199.39 7.34E-08 202.35 6.42E-08 194.78 6.82E-08 269.73 3.53E-08 252.47 3.00E-08 239.27 2.23E-08 
pdc 934.04 1.49E-07 958.96 1.43E-07 916.11 1.58E-07 1185.60 7.69E-08 1175.54 7.16E-08 1108.00 3.84E-08 

s1423 16.37 5.82E-08 16.33 6.17E-08 15.56 7.05E-08 75.38 2.24E-08 68.70 1.58E-08 69.63 9.34E-09 
s298 228.22 1.32E-07 228.34 1.33E-07 211.04 1.33E-07 456.04 4.85E-08 484.41 3.91E-08 417.54 2.82E-08 

s38417 693.47 1.02E-07 706.32 7.84E-08 663.02 8.10E-08 1976.38 7.21E-08 1872.36 5.52E-08 1898.11 3.30E-08 
s38584. 678.84 1.06E-07 687.54 7.19E-08 686.95 7.14E-08 1721.81 1.19E-07 1494.88 1.05E-07 1513.75 9.22E-08 

seq 259.92 7.90E-08 264.26 7.61E-08 254.12 7.59E-08 355.04 4.49E-08 341.66 3.30E-08 325.21 3.07E-08 
spla 625.59 1.35E-07 638.53 1.53E-07 627.76 1.41E-07 846.56 5.33E-08 828.61 5.04E-08 782.97 3.29E-08 
tseng 102.62 5.53E-08 102.31 5.23E-08 95.51 5.58E-08 308.53 4.55E-08 314.08 4.02E-08 300.79 2.34E-08 
Norm 1.00 1.00 1.03 0.86 0.98 0.90 1.77 0.53 1.70 0.44 1.62 0.31 

       1.00 1.00 0.96 0.84 0.91 0.59 
 


